Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Indian J Biochem Biophys ; 2022 Sept; 59(9): 936-939
Article | IMSEAR | ID: sea-221581

ABSTRACT

The effluent contains many harmful microbes which should be eliminated before it is discharged into a water body. Silver nanoparticles (AgNPs) being high-quality significance and have a great impact on this research field as it inhibits microbial proliferation and infection. Therefore, it may use for Bioremediation purposes, our laboratory is fascinated by the production of polymer matrix entrapment silver nanoparticles for in situ bio-remediation purposes. The AgNPs was prepared from sawdust by decoction method. The yellowish solution turns into dark brown colour indicating the formation of AgNPs. A sharp SPR (Surface Plasmon Resonance) band formation in UV-vis spectroscopy scan establishes the formation and stability of silver nanoparticles in an aqueous solution. SEM microphotograph indicated roughly spheroidal structure with (63±3) nm average diameters of newly synthesized AgNp. Polyvinyl alcohol (PVA) is eco-friendly and non-toxic to the environment was chosen for the preparation of polymeric matrix. The non-toxic concentration (1 ?g/mL) of AgNp was dispersed into PVA solution followed by cross-linked with maleic acid. PVA- maleic acid is cross-linked by the formation of an ester bond, whereas silver nanoparticles physically entrap into the cross-linked matrix. The silver nanoparticles were released from the matrix nearly after 10 min of swelling of the composite film. In a microbial assay using E. coli agar medium, PVA-AgNp composite film shows the significant killing of microorganisms. Microbial elimination is measured indirectly by pH measurement and dissolved oxygen concentration measurement of the effluent in situ against RO- water, taken as control. The dissolved oxygen concentration from RO water and effluent water was measured on Day “0” followed by treatment and incubation at the BOD chamber. The treatment with PVA-AgNp composite film reduced the BOD Level and increase dissolved oxygen level simultaneously increasing the quality of water.

2.
Indian J Biochem Biophys ; 2022 Jun; 59(6): 696-701
Article | IMSEAR | ID: sea-221551

ABSTRACT

The scaffold based tissue engineering materialized for bone tissue therapy. Gelatin-glutaraldehyde cross linked scaffold was prepared by solvent casting -porogen leaching method. It was characterized by FTIR and SEM microphotograph analysis. Absence of peak at waves no. 1625 cm?1 in ATR-FTIR indicated formation of cross-linking. FE-SEM micrograph showed honeycomb pad like structure with high porosity. Methanolic extract of Withania somnifera (Ashwagandha) root extract induced MC3T3 E1 osteoblast cell adhesion and proliferation on porous gelatin scaffold. GC-MS analysis pointed out presence of 4-amino- 2-ethyl-3-methylquinoline, an active phyto-chemicals having tissue regeneration potential. High anti-oxidant capacity down regulates cell death mechanism by scavenging free radical. The biocompatible gelatin scaffold has RGD moiety that attune the MC3T3 E1 osteoblast cell adhesion. Withania somnifera root extract may boost up cell proliferation on scaffold. Therefore treatment with Withania somnifera root extract may be the new approaches for designing bone tissue scaffold for bone tissue therapy.

SELECTION OF CITATIONS
SEARCH DETAIL